3 March 2020

Detecting Dead Stars in Deep Space

by Ru Kein

A supervised machine learning feature classification project that uses Decision Trees and XGBoost to predict and classify signals as either a pulsar or radio frequency interference (noise).

Pulsars

Pulsars are a rare type of Neutron star that produce radio emission detectable here on Earth. They are of considerable scientific interest as probes of space-time, the inter-stellar medium, and states of matter.

What happens when they rotate?

Glad you asked. As pulsars rotate, their emission beams sweep across the sky which produces a detectable pattern of broadband radio emission when crossing our line of sight. As pulsars rotate rapidly, this pattern repeats periodically. Thus pulsar search involves looking for periodic radio signals with large radio telescopes.

So how do we detect pulsars?

Each pulsar produces a slightly different emission pattern, which varies slightly with each rotation. Detection of a potential signal is known as a ‘candidate’, which is averaged over many rotations of the pulsar, as determined by the length of an observation.

Sounds easy enough

The problem is that, in the absence of additional info, each candidate could potentially describe a real pulsar. However in practice almost all detections are caused by radio frequency interference (RFI) and noise, making legitimate signals hard to find. Thus, legitimate pulsar examples are a minority positive class, and spurious examples the majority negative class.

proportion of target variables

The Dataset

HTRU2 is a data set which describes a sample of pulsar candidates collected during the High Time Resolution Universe Survey. The data set shared here contains 16,259 spurious examples caused by RFI/noise, and 1,639 real pulsar examples. Each row lists the variables first, and the class label is the final entry. The class labels used are 0 (negative) and 1 (positive).

Features (variables)

Each candidate is described by 8 continuous variables, and a single class variable. The first four are simple statistics obtained from the integrated pulse profile (folded profile). This is an array of continuous variables that describe a longitude-resolved version of the signal that has been averaged in both time and frequency. The remaining four variables are similarly obtained from the DM-SNR curve.

* Mean of the integrated profile.
* Standard deviation of the integrated profile.
* Excess kurtosis of the integrated profile.
* Skewness of the integrated profile.
* Mean of the DM-SNR curve.
* Standard deviation of the DM-SNR curve.
* Excess kurtosis of the DM-SNR curve.
* Skewness of the DM-SNR curve.
* Class

HTRU 2 Summary:

* 17,898 total examples
        * 1,639 positive examples
        * 16,259 negative examples

Inspect the dataset

Mean of the integrated profile Standard deviation of the integrated profile Excess kurtosis of the integrated profile Skewness of the integrated profile Mean of the DM-SNR curve Standard deviation of the DM-SNR curve Excess kurtosis of the DM-SNR curve Skewness of the DM-SNR curve target_class
0 140.562500 55.683782 -0.234571 -0.699648 3.199833 19.110426 7.975532 74.242225 0
1 102.507812 58.882430 0.465318 -0.515088 1.677258 14.860146 10.576487 127.393580 0
2 103.015625 39.341649 0.323328 1.051164 3.121237 21.744669 7.735822 63.171909 0
3 136.750000 57.178449 -0.068415 -0.636238 3.642977 20.959280 6.896499 53.593661 0
4 88.726562 40.672225 0.600866 1.123492 1.178930 11.468720 14.269573 252.567306 0

Comparing Attributes

Hotmap( )

def hotmap(df, figsize=(10,8)):
    ##### correlation heatmap
    corr = df.corr()
    fig, ax = plt.subplots(figsize=figsize)
    mask = np.zeros_like(corr, dtype=np.bool)
    idx = np.triu_indices_from(mask)
    mask[idx] = True
    
    sns.heatmap(np.abs(corr),square=True, mask=mask, annot=True,
            cmap=sns.color_palette("magma"),ax=ax,linewidth=2,edgecolor="k")
    ax.set_ylim(len(corr), -.5,.5)
    
    plt.title("CORRELATION BETWEEN VARIABLES")
    plt.show();
    
    ##### descriptive statistics heatmap
    fig, ax = plt.subplots(figsize=figsize)
    
    sns.heatmap(df.describe()[1:].transpose(),annot=True, ax=ax, 
                linecolor="w", linewidth=2,cmap=sns.color_palette("Set2")) #"Set2"
    ax.set_ylim(len(corr), -.5,.5)
    plt.title("Data summary")
    plt.show()
    
    plt.figure(figsize=(13,8))
    
    ### compare proportion of target classes 
    plt.subplot(121)
    ax = sns.countplot(y = df["TARGET"],
                       palette=["b","lime"],
                       linewidth=1,
                       edgecolor="k"*2)
    for i,j in enumerate(df["TARGET"].value_counts().values):
        ax.text(.7,i,j,weight = "bold",fontsize = 27)
    plt.title("Count for target variable in datset")


    plt.subplot(122)
    plt.pie(df["TARGET"].value_counts().values,
            labels=["not pulsars","pulsars"],
            autopct="%1.0f%%",wedgeprops={"linewidth":2,"edgecolor":"white"})
    circ = plt.Circle((0,0),.7,color = "white")
    plt.gca().add_artist(circ)
    plt.subplots_adjust(wspace = .2)
    plt.title("Proportion of target variable in dataset")
    plt.show()

hotmap(df, figsize=(10,8))

Feature Correlation Heatmap

feature correlation heatmap

Descriptive Statistics Heatmap

descriptive statistics heatmap

Target Variable Proportions

target variable proportions

Target Class Values

Target Class Values are highly differentiated for the following features:

* Kurtosis Integrated Profile
* Skewness Integrated Profile

Other candidates include:

* Mean Curve
* Standard Deviation Cruve
* Kurtosis Curve
* Skewness Curve

Least likely to be important in distinguishing pulsars and RFI:

* Mean Integrated Profile
* Standard Deviation IP

Plot Mean and Standard Deviation of Features (function)

# LINEPLOTS
compare = df.groupby('TARGET')[['MEAN_IP', 'STD_IP', 'KURTOSIS_IP', 'SKEWNESS_IP',
                                        'MEAN_CURVE', 'STD_CURVE', 'KURTOSIS_CURVE',
                                        'SKEWNESS_CURVE']].mean().reset_index()


compare = compare.drop('TARGET', axis=1)

# compare mean of target class varibales
compare_mean = compare.transpose().reset_index()
compare_mean = compare_mean.rename(columns={'index':"features", 0:"not_pulsar", 1:"pulsar"})
plt.figure(figsize=(13,14))
plt.subplot(211)
sns.pointplot(x="features",y="not_pulsar",data=compare_mean,color="b")
sns.pointplot(x="features",y="pulsar",data=compare_mean,color="lime")
plt.xticks(rotation=45)
plt.xlabel("")
plt.grid(True,alpha=.3)
plt.title("COMPARING MEAN OF ATTRIBUTES FOR TARGET CLASSES")

# compare standard deviation of target class variables
compare1 = df.groupby('TARGET')[['MEAN_IP', 'STD_IP', 'KURTOSIS_IP', 'SKEWNESS_IP',
                                        'MEAN_CURVE', 'STD_CURVE', 'KURTOSIS_CURVE',
                                        'SKEWNESS_CURVE']].std().reset_index()
compare1 = compare1.drop('TARGET',axis=1)


compare_std = compare1.transpose().reset_index()
compare_std = compare_std.rename(columns={'index':"features", 0:"not_pulsar", 1:"pulsar"})
plt.subplot(212)
sns.pointplot(x="features",y="not_pulsar",data=compare_std,color="b")
sns.pointplot(x="features",y="pulsar",data=compare_std,color="lime")
plt.xticks(rotation=45)
plt.grid(True,alpha=.3)
plt.title("COMPARING STANDARD DEVIATION OF ATTRIBUTES FOR TARGET CLASSES")
plt.subplots_adjust(hspace =.4)
print ("[GREEN == PULSAR , BLUE == NON-PULSAR]")
plt.show()
[GREEN == PULSAR , BLUE == NON-PULSAR]

Plot Mean and Standard Deviation of Features (lineplots)

mean and std feature line plots

Possible Candidate: Skewness Curve

The mean and standard deviation of the Skewness Curve appears to stand out as a possible predictor candidate for our target class.

Plot Feature Distributions (function)

# DISTRIBUTION
import itertools
columns = ['MEAN_IP', 'STD_IP', 'KURTOSIS_IP', 'SKEWNESS_IP',
           'MEAN_CURVE', 'STD_CURVE', 'KURTOSIS_CURVE','SKEWNESS_CURVE']
length  = len(columns)
colors  = ["r","lime","b","m","orangered","c","k","orange"] 

plt.figure(figsize=(13,20))
for i,j,k in itertools.zip_longest(columns,range(length),colors):
    plt.subplot(length/2,length/4,j+1)
    sns.distplot(df[i],color=k)
    plt.title(i)
    plt.subplots_adjust(hspace = .3)
    plt.axvline(df[i].mean(),color = "k",linestyle="dashed",label="MEAN")
    plt.axvline(df[i].std(),color = "b",linestyle="dotted",label="STANDARD DEVIATION")
    plt.legend(loc="upper right")
    
print ("***************************************")
print ("DISTIBUTION OF VARIABLES IN DATA SET")
print ("***************************************")
***************************************
DISTIBUTION OF VARIABLES IN DATA SET
***************************************

Feature Distribution (visual)

feature distribution plots

Feature Pair Plots (function)

sns.pairplot(df,hue="TARGET")
plt.title("pair plot for variables")
plt.show()

Feature Pair Plots

feature pair plots

Scatter plot for skewness and kurtosis of dmsnr_curve (function)

# SCATTERPLOTS
plt.figure(figsize=(14,7))

##### FIRST PLOT
plt.subplot(121)
plt.scatter(x='KURTOSIS_IP',y='SKEWNESS_IP', data=df[df['TARGET'] == 1],alpha=.7,
            label="PULSARS", s=30, color='cyan',linewidths=.4,edgecolors="black")
plt.scatter(x='KURTOSIS_IP',y='SKEWNESS_IP', data=df[df['TARGET'] == 0],alpha=.6,
            label="NOT PULSARS",s=30,color ="b",linewidths=.4,edgecolors="black")
## VLINES
plt.axvline(df[df['TARGET'] == 1]['KURTOSIS_IP'].mean(),
            color = "k",linestyle="dashed",label='PULSAR Mean')
plt.axvline(df[df['TARGET'] == 0]['KURTOSIS_IP'].mean(),
            color = "magenta",linestyle="dashed",label ='NON-PULSAR Mean')
## HLINES
plt.axhline(df[df['TARGET'] == 1]['SKEWNESS_IP'].mean(),
            color = "k",linestyle="dashed")
plt.axhline(df[df['TARGET'] == 0]['SKEWNESS_IP'].mean(),
            color = "magenta",linestyle="dashed")
## LABELS
plt.legend(loc='best')
plt.xlabel("Kurtosis Integrated Profile")
plt.ylabel("Skewness Integrated Profile")
# plt.title("Scatter plot for skewness and kurtosis for target classes")

##### SECOND PLOT
plt.subplot(122)
plt.scatter(x='SKEWNESS_CURVE',y='KURTOSIS_CURVE',data=df[df['TARGET'] == 0],alpha=.7,
            label='NOT PULSARS',s=30,color ="blue",linewidths=.4,edgecolors="black")
plt.scatter(x='SKEWNESS_CURVE',y='KURTOSIS_CURVE',data=df[df['TARGET'] == 1],alpha=.7,
            label="PULSARS",s=30,color = "cyan",linewidths=.4,edgecolors="black")
## VLINES
plt.axvline(df[df['TARGET'] == 1]['KURTOSIS_CURVE'].mean(),
            color = "k",linestyle="dashed",label ="PULSAR Mean")
plt.axvline(df[df['TARGET'] == 0]['KURTOSIS_CURVE'].mean(),
            color = "magenta",linestyle="dashed",label ="NON-PULSAR Mean")
## HLINES
plt.axhline(df[df['TARGET'] == 1]['SKEWNESS_CURVE'].mean(),
            color = "k",linestyle="dashed")
plt.axhline(df[df['TARGET'] == 0]['SKEWNESS_CURVE'].mean(),
            color = "magenta",linestyle="dashed")
## LABELS
plt.legend(loc ="best")
plt.xlabel("Skewness DM-SNR Curve")
plt.ylabel("Kurtosis DM-SNR Curve")
plt.title("Scatter plot for skewness and kurtosis of dmsnr_curve for target classes")
plt.subplots_adjust(wspace =.4)

Skewness and Kurtosis of dmsnr_curve (scatterplots)

skewness and kurtosis scatterplots

Compare Features Using Boxplots (function)

# BOXPLOTS
columns = [x for x in df.columns if x not in ['TARGET']]
length  = len(columns)
plt.figure(figsize=(13,20))
for i,j in itertools.zip_longest(columns,range(length)):
    plt.subplot(4,2,j+1)
    sns.lvplot(x=df['TARGET'],y=df[i],palette=["blue","cyan"])
    plt.title(i)
    plt.subplots_adjust(hspace=.3)
    plt.axhline(df[i].mean(),linestyle = "dashed",color ="k",
                label ="Mean value for data")
    plt.legend(loc="best")
    
print ("****************************************************")
print ("BOXPLOT FOR VARIABLES IN DATA SET WITH TARGET CLASS")
print ("****************************************************")
****************************************************
BOXPLOT FOR VARIABLES IN DATA SET WITH TARGET CLASS
****************************************************

Compare Features Using Boxplots (visual)

compare features boxplots

Area/Stack Plots (function)

# STACKPLOTS
st = df[df['TARGET'] == 1].reset_index()
nst= df[df['TARGET'] == 0].reset_index()
new = pd.concat([nst,st]).reset_index()

plt.figure(figsize=(13,10))
plt.stackplot(new.index,new['MEAN_IP'],
              alpha =.5,color="b",labels=['MEAN_IP'])
plt.stackplot(new.index,new['STD_IP'],
              alpha=.7,color="c",labels=['STD_IP'])
plt.stackplot(new.index,new['SKEWNESS_IP'],
              alpha=.5,color ="orangered",labels=['SKEWNESS_IP'])
plt.stackplot(new.index,new['KURTOSIS_IP'],
              alpha=.8,color = "magenta",labels=['KURTOSIS_IP'])

plt.axvline(x=16259,color = "black",linestyle="dashed",
            label = "PULSARS vs NON-PULSARS")
plt.axhline(new['MEAN_IP'].mean(),color = "b",
            linestyle="dashed",label = "Average Mean Profile")
plt.axhline(new['STD_IP'].mean(),color = "c",
            linestyle="dashed",label = "Average Std Profile")
plt.axhline(new['SKEWNESS_IP'].mean(),color = "orangered",
            linestyle="dashed",label = "Average Skewness Profile")
plt.axhline(new['KURTOSIS_IP'].mean(),color = "magenta",
            linestyle="dashed",label = "Average Kurtosis Profile")
plt.legend(loc="best")
plt.title("Area plot for attributes for pulsar stars vs non pulsar stars")
plt.show()

Compare Features with Stacked Area Plots (visual)

compare features stacked area plots

Compare Mean IP vs Standard Deviation IP vs Skewness Curve (function)

from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(13,13))
ax  = fig.add_subplot(111,projection = "3d")

ax.scatter(df[df["TARGET"] == 1][["MEAN_IP"]],
           df[df["TARGET"] == 1][["STD_IP"]],
           df[df["TARGET"] == 1][["SKEWNESS_CURVE"]],
           alpha=.5, s=80, linewidth=2, edgecolor="w",
           color="lime", label="Pulsar")

ax.scatter(df[df["TARGET"] == 0][["MEAN_IP"]],
           df[df["TARGET"] == 0][["STD_IP"]],
           df[df["TARGET"] == 0][["SKEWNESS_CURVE"]],
           alpha=.5, s=80, linewidth=2, edgecolor="w",
           color="b", label="Non-Pulsar")

ax.set_xlabel("MEAN_IP", fontsize=15)
ax.set_ylabel("STD_IP", fontsize=15)
ax.set_zlabel("SKEWNESS_CURVE",fontsize=15)
plt.legend(loc="best")
fig.set_facecolor("w")
plt.title("MEAN_PROFILE VS STD_PROFILE VS SKEWNESS_DMSNR_CURVE",
          fontsize=10)
plt.show()

Compare Mean IP vs Standard Deviation IP vs Skewness Curve (3D Plot)

compare mean IP vs std IP vs skewness curve

Mean Profile vs Standard Deviation Profile Jointplots (function)

sns.jointplot(df['MEAN_IP'],df['STD_IP'],kind="kde",scale=10)
plt.show()

Mean Profile vs Standard Deviation Profile Jointplots (visual)

Mean Profile vs STD Profile Jointplots

Compare Features with Violin Plots (function)

columns = [x for x in df.columns if x not in ['TARGET']]
length  = len(columns)

plt.figure(figsize=(13,25))

for i,j in itertools.zip_longest(columns,range(length)):
    plt.subplot(length/2,length/4,j+1)
    sns.violinplot(x=df['TARGET'],y=df[i],
                   palette=["blue","cyan"],alpha=.5)
    plt.title(i)

Compare Features with Violin Plots (Visual)

Compare Features with Violin Plots

Compare Features with Barplots (function)

# BARPLOTS
columns = [x for x in df.columns if x not in ['TARGET']]
length  = len(columns)

plt.figure(figsize=(13,25))

for i,j in itertools.zip_longest(columns,range(length)):
    plt.subplot(length/2,length/4,j+1)
    sns.barplot(x=df['TARGET'],y=df[i],
                   palette=["blue","lime"],alpha=.7)
    plt.title(i)

Compare Features with Barplots (visual)

Compare Features with Bar Plots

Compare Mean Profile, Kurtosis Profile, Skewness Profile (function)

f, ax = plt.subplots(figsize=(6.5, 6.5))
sns.despine(f, left=True, bottom=True)

sns.scatterplot(x='MEAN_IP', y='KURTOSIS_IP',
                hue='TARGET', size='SKEWNESS_IP',
                palette=['b','c'],
                sizes=(1, 8), linewidth=0,
                data=df, ax=ax)

Comparing Mean Profile, Kurtosis Profile, Skewness Profile (scatterplot)

Compare Mean, Kurtosis, Skewness Profiles Scatterplot

Compare Skewness Curve, Kurtosis Profile, Mean Curve (function)

f, ax = plt.subplots(figsize=(6.5, 6.5))
sns.despine(f, left=True, bottom=True)

sns.scatterplot(x='SKEWNESS_CURVE', y='KURTOSIS_IP',
                hue='TARGET', size='MEAN_CURVE',
                palette=['b','c'],
                sizes=(1, 8), linewidth=0,
                data=df, ax=ax)

Compare Skewness Curve, Kurtosis Profile, Mean Curve (scatterplot)

Compare Skewness Curve, Kurtosis Profile, Mean Curve Scatterplot

Compare Kurtosis Profile, Kurtosis Curve, Mean Curve (function)

f, ax = plt.subplots(figsize=(6.5, 6.5))
sns.despine(f, left=True, bottom=True)

sns.scatterplot(x='KURTOSIS_IP', y='KURTOSIS_CURVE',
                hue='TARGET', size='MEAN_CURVE',
                palette=['b','c'],
                sizes=(1, 8), linewidth=0,
                data=df, ax=ax)

Compare Kurtosis Profile, Kurtosis Curve, Mean Curve (scatterplot)

Compare Kurtosis Profile, Kurtosis Curve, Mean Curve Scatterplot

Compare Kurtosis Profile vs Standard Deviation Profile (function)

f, ax = plt.subplots(figsize=(6.5, 6.5))
sns.despine(f, left=True, bottom=True)

sns.scatterplot(x='KURTOSIS_IP', y='STD_IP',
                hue='TARGET', size='KURTOSIS_IP',
                palette=['b','c'],
                sizes=(1, 8), linewidth=0,
                data=df, ax=ax)

Compare Kurtosis Profile vs Standard Deviation Profile (scatterplot)

Compare Kurtosis Profile vs Standard Deviation Profile Scatterplot

Compare Kurtosis Profile vs Kurtosis Curve (function)

f, ax = plt.subplots(figsize=(6.5, 6.5))
sns.despine(f, left=True, bottom=True)

sns.scatterplot(x='KURTOSIS_IP', y='KURTOSIS_CURVE',
                hue='TARGET', size='KURTOSIS_IP',
                palette=['b','c'],
                sizes=(1, 8), linewidth=0,
                data=df, ax=ax)

Compare Kurtosis Profile vs Kurtosis Curve (scatterplot)

Compare Kurtosis Profile vs Kurtosis Curve Scatterplot

MODEL

Split Data

# create our feature set X and labels y:

y = df['TARGET'].copy()
X = df.drop(columns=['TARGET']).copy()
display(y.shape, X.shape)
(17898,)



(17898, 8)
# We'll do a 75/25 split on the dataset for training/test. 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33)

Construct Pipelines

  1. Scale data using StandardScaler()
  2. Construct Pipelines
# logistic regression
pipe_lr = Pipeline([('scl', StandardScaler()),
                   ('pca', PCA(n_components=2)),
                   ('clf', LogisticRegression(class_weight='balanced'))])

# support vector
pipe_svm = Pipeline([('scl', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                    ('clf', svm.SVC(class_weight='balanced'))])


# decision tree
pipe_dt = Pipeline([('scl', StandardScaler()),
                   ('pca', PCA(n_components=2)),
                    ('clf', tree.DecisionTreeClassifier(class_weight='balanced'))])

# xgboost
pipe_xgb = Pipeline([('xgb', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                     ('clf', XGBClassifier(class_weight='balanced'))])
# List of pipelines for ease of iteration
pipelines = [pipe_lr, pipe_svm, pipe_dt, pipe_xgb]
# Dictionary of pipelines and classifier types for ease of reference
pipe_dict = {0: 'Logistic Regression', 
             1: 'Support Vector Machine', 
             2: 'Decision Tree', 
             3: 'XG Boost'}
# Fit the pipelines
for pipe in pipelines:
    pipe.fit(X_train, y_train)
# Compare accuracies
for idx, val in enumerate(pipelines):
    print('%s pipeline training accuracy: %.3f' % (pipe_dict[idx], val.score(X_train, y_train)))
    print('%s pipeline test accuracy: %.3f' % (pipe_dict[idx], val.score(X_test, y_test)))
Logistic Regression pipeline training accuracy: 0.935
Logistic Regression pipeline test accuracy: 0.937
Support Vector Machine pipeline training accuracy: 0.955
Support Vector Machine pipeline test accuracy: 0.955
Decision Tree pipeline training accuracy: 1.000
Decision Tree pipeline test accuracy: 0.959
XG Boost pipeline training accuracy: 0.976
XG Boost pipeline test accuracy: 0.973
# Identify the most accurate model on test data
best_acc = 0.0
best_clf = 0
best_pipe = ''


for idx, val in enumerate(pipelines):
    if val.score(X_test, y_test) > best_acc:
        best_acc = val.score(X_test, y_test)
        best_pipe = val
        best_clf = idx
        
print('Classifier with best accuracy: %s' % pipe_dict[best_clf])

# Save pipeline to file
joblib.dump(best_pipe, 'best_pipeline.pkl', compress=1)
print('Saved %s pipeline to file' % pipe_dict[best_clf])
Classifier with best accuracy: XG Boost
Saved XG Boost pipeline to file

Decision Tree

Decision Tree

Standardize

# Standardize the data
std = StandardScaler()
X_train_transformed = std.fit_transform(X_train)
X_test_transformed = std.transform(X_test)

Create Instance

## Create an instance of decision tree classifier
dt_clf = DecisionTreeClassifier(criterion='entropy', class_weight='balanced')

Fit

# Fit the training data to the model
dt_clf.fit(X_train_transformed, y_train)
DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
                       max_depth=None, max_features=None, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, presort=False,
                       random_state=None, splitter='best')

DOT Graph

# Create DOT data
dot_data = export_graphviz(dt_clf, out_file=None, 
                           feature_names=X.columns,  
                           class_names=np.unique(y).astype('str'), 
                           filled=True, rounded=True, special_characters=True)

# Draw graph
graph = graph_from_dot_data(dot_data)  

# Show graph
Image(graph.create_png())

Decision Tree Dot Graph

Decision Tree Dot Graph

Make Predictions

# Make predictions for test data
y_pred = dt_clf.predict(X_test_transformed)

Evaluate

Accuracy

# Check the accuracy, AUC, and create a confusion matrix

acc = accuracy_score(y_test,y_pred) * 100
print('Accuracy is :{0}'.format(acc))
Accuracy is :96.56339935669544

ROC_AUC (Receiver Operator Characteristics Area Under the Curve)

# Check the AUC for predictions
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(false_positive_rate, true_positive_rate)
print('\nAUC is :{0}'.format(round(roc_auc, 2)))

AUC is :0.91

Confusion Matrix

# Create and print a confusion matrix 
print('\nConfusion Matrix')
print('----------------')
pd.crosstab(y_test, y_pred, rownames=['True'], colnames=['Predicted'], margins=True)
Confusion Matrix
----------------
Predicted 0 1 All
True
0 5242 121 5363
1 82 462 544
All 5324 583 5907
# Print confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:\n', cnf_matrix)
Confusion Matrix:
 [[5242  121]
 [  82  462]]


TRUE POSITIVES: 462 Pulsars correctly identified,
TRUE NEGATIVES: 5242 correctly classified as noise
FALSE POSITIVES: 121 RFI/noise misclassified as pulsars
FALSE NEGATIVES: 82 Pulsars misclassifed as noise
def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',cmap=plt.cm.Blues):
    
    import itertools
    # Check if normalize is set to True
    # If so, normalize the raw confusion matrix before visualizing
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')


    
    fig, ax = plt.subplots(figsize=(10,10))
    #mask = np.zeros_like(cm, dtype=np.bool)
    #idx = np.triu_indices_from(mask)
    
    #mask[idx] = True

    plt.imshow(cm, cmap=cmap, aspect='equal')
    
    # Add title and axis labels 
    plt.title('Confusion Matrix') 
    plt.ylabel('True label') 
    plt.xlabel('Predicted label')
    
    # Add appropriate axis scales
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
    #ax.set_ylim(len(cm), -.5,.5)
    
    # Text formatting
    fmt = '.2f' if normalize else 'd'
    # Add labels to each cell
    thresh = cm.max() / 2.
    # iterate thru matrix and append labels  
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment='center',
                 color='darkgray' if cm[i, j] > thresh else 'black',
                size=14, weight='bold')
    
    # Add a legend
    plt.colorbar()
    plt.show() 
# Plot normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=['Non-Pulsar', 'Pulsar'], normalize=True,
                      title='Normalized confusion matrix')

Normalized confusion matrix

Normalized Confusion Matrix

Parameter Tuning

* Create an array for max_depth values ranging from 1 - 32
* In a loop, train the classifier for each depth value (32 runs) 
* Calculate the training and test AUC for each run
* Plot a graph to show under/over fitting and optimal value
* Interpret the results

Max Depth

# Check for the best depth parameter
max_depths = np.linspace(1, 32, 32, endpoint=True)
train_results = []
test_results = []

# Identify the optimal tree depth for given data
for max_depth in max_depths:
    dt = DecisionTreeClassifier(criterion='entropy', max_depth=max_depth, class_weight='balanced')
    dt.fit(X_train_transformed, y_train)
    train_pred = dt.predict(X_train_transformed)
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
   
    # Add auc score to previous train results
    train_results.append(roc_auc)
    y_pred = dt.predict(X_test_transformed)
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
   
    # Add auc score to previous test results
    test_results.append(roc_auc)

# PLOT AUC curve
plt.figure(figsize=(11,8))
plt.plot(max_depths, train_results, 'k', label='Train AUC')
plt.plot(max_depths, test_results, 'r', label='Test AUC')
plt.ylabel('AUC score')
plt.xlabel('Tree depth')
plt.title('MAX TREE DEPTH')
plt.legend()
plt.show()

AUC Curve Plot

Area Under the Curve
Max tree depth optimal value does not improve beyond 3 for test data.

Min Sample Split

Now we’ll check for the best min_samples_splits parameter for our decision tree.

* Create an array for min_sample_splits values ranging from 0.1 - 1 with an 
increment of 0.1
* In a loop, train the classifier for each min_samples_splits value (10 runs)
* Calculate the training and test AUC for each run
* Plot a graph to show under/over fitting and optimal value
* Interpret the results
# Identify the optimal min-samples-split for given data

min_samples_splits = np.linspace(0.1, 1.0, 10, endpoint=True)
train_results = []
test_results = []

for min_samples_split in min_samples_splits:
    dt = DecisionTreeClassifier(criterion='entropy', min_samples_split=min_samples_split, class_weight='balanced')
    dt.fit(X_train_transformed, y_train)
    train_pred = dt.predict(X_train_transformed)
    
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    train_results.append(roc_auc)
    
    y_pred = dt.predict(X_test_transformed)
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    test_results.append(roc_auc)

plt.figure(figsize=(11,8))
plt.plot(min_samples_splits, train_results, 'k', label='Train AUC')
plt.plot(min_samples_splits, test_results, 'r', label='Test AUC')
plt.xlabel('Min. Sample splits')
plt.ylabel('AUC score')
plt.title('MIN SAMPLES SPLITS')
plt.legend()
plt.show()
Area Under the Curve 2
AUC does not improve beyond 0.2 for test data.

Minimum Sample Leafs

Now we’ll check for the best min_samples_leafs parameter value for our decision tree.

* Create an array for min_samples_leafs values ranging from 0.1 - 0.5 
with an increment of 0.1
* In a loop, train the classifier for each min_samples_leafs value (5 runs)
* Calculate the training and test AUC for each run
* Plot a graph to show under/over fitting and optimal value
* Interpret the results
# Calculate the optimal value for minimum sample leafs
min_samples_leafs = np.linspace(0.1, 0.5, 5, endpoint=True)
train_results = []
test_results = []

for min_samples_leaf in min_samples_leafs:
    dt = DecisionTreeClassifier(criterion='entropy', min_samples_leaf=min_samples_leaf, class_weight='balanced')
    dt.fit(X_train_transformed, y_train)
    train_pred = dt.predict(X_train_transformed)
    
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    train_results.append(roc_auc)
    
    y_pred = dt.predict(X_test_transformed)
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    test_results.append(roc_auc)

# PLOT
plt.figure(figsize=(11,7))    
plt.plot(min_samples_leafs, train_results, 'b', label='Train AUC')
plt.plot(min_samples_leafs, test_results, 'r', label='Test AUC')
plt.ylabel('AUC score')
plt.xlabel('Min. Sample Leafs')
plt.title('MIN SAMPLE LEAFS')
plt.legend()
plt.show()
Area Under the Curve 3
Highest AUC for both train and test data maximized at 0.10.

Maximum Features

Now we’ll check for the best max_features parameter value for our decision tree.

* Create an array for max_features values ranging from 1 - 12 (1 features vs all)
* In a loop, train the classifier for each max_features value (12 runs)
* Calculate the training and test AUC for each run
* Plot a graph to show under/over fitting and optimal value
* Interpret the results
# Find the best value for optimal maximum feature size
max_features = list(range(1, X_train.shape[1]))
train_results = []
test_results = []

for max_feature in max_features:
    dt = DecisionTreeClassifier(criterion='entropy', max_features=max_feature, class_weight='balanced')
    dt.fit(X_train_transformed, y_train)
    train_pred = dt.predict(X_train_transformed)
    
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, train_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    train_results.append(roc_auc)
    
    y_pred = dt.predict(X_test_transformed)
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    test_results.append(roc_auc)

plt.figure(figsize=(13,8))
plt.plot(max_features, train_results, 'b', label='Train AUC')
plt.plot(max_features, test_results, 'r', label='Test AUC')
plt.ylabel('AUC score')
plt.xlabel('max features')
plt.title('MAX FEATURES')
plt.legend()
plt.show()
Area Under the Curve 4
Increasing parameters has no clear effect on training data (flat AUC). 
Optimal value for test data is 5.

Retrain classifier

We’ll now use the best values from each training phase above and feed it back to our classifier and see if have any improvement in predictive performance.

* Train the classifier with optimal values identified
* Compare the AUC with vanilla DT AUC
* Interpret the results of comparison
# Re-train DT classifier with optimal values identified above
dt_clf = DecisionTreeClassifier(criterion='entropy', class_weight='balanced',
                                max_features=5,
                                max_depth=3,
                                min_samples_split=0.2,
                                min_samples_leaf=0.1)
# fit model
dt_clf.fit(X_train_transformed, y_train)

# make predictions
y_pred = dt_clf.predict(X_test_transformed)

# roc_auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc
0.9257396472014128

DOT Graph

# Create DOT data
dot_data = export_graphviz(dt_clf, out_file=None, 
                           feature_names=X.columns,  
                           class_names=np.unique(y).astype('str'), 
                           filled=True, rounded=True, special_characters=True)

# Draw graph
graph = graph_from_dot_data(dot_data)  

# Show graph
Image(graph.create_png())
Dot Graph 2
def modelX(algorithm, X_train, y_train, X_test, y_test, of_type):
    from sklearn.metrics import classification_report
    print ("**********"*7)
    print ("MODEL X")
    print ("**********"*7)
    algorithm.fit(X_train, y_train)
    y_pred = algorithm.predict(X_test)
    
    print (algorithm)
    print ("\n accuracy_score :", accuracy_score(y_test, y_pred))
    
    print ("\nclassification report :\n",(classification_report(y_test, y_pred)))
        
    plt.figure(figsize=(13,10))
    plt.subplot(221)
    sns.heatmap(confusion_matrix(y_test, y_pred),annot=True,fmt = "d",linecolor="k",linewidths=3)
    plt.title("CONFUSION MATRIX",fontsize=20)
    
    pred_probs = algorithm.predict_proba(X_test)[:,1]
    fpr,tpr,thresholds = roc_curve(y_test, pred_probs)
    plt.subplot(222)
    plt.plot(fpr,tpr,label = ("Area_under the curve :",auc(fpr,tpr)),color = "r")
    plt.plot([1,0],[1,0],linestyle = "dashed",color ="k")
    plt.legend(loc = "best")
    plt.title("ROC - CURVE & AREA UNDER CURVE",fontsize=20)
    
    if of_type == "feat":
        
        dataframe = pd.DataFrame(algorithm.feature_importances_, X_train.columns).reset_index()
        dataframe = dataframe.rename(columns={"index":"features",0:"coefficients"})
        dataframe = dataframe.sort_values(by="coefficients",ascending = False)
        plt.subplot(223)
        ax = sns.barplot(x ="coefficients", y="features",data=dataframe, palette="husl")
        plt.title("FEATURE IMPORTANCES",fontsize =20)
        for i,j in enumerate(dataframe["coefficients"]):
            ax.text(.011,i,j,weight = "bold")
    
    elif of_type == "coef":
        try:
            dataframe = pd.DataFrame(algorithm.coef_.ravel(), X_train.columns).reset_index()
            dataframe = dataframe.rename(columns={"index":"features",0:"coefficients"})
            dataframe = dataframe.sort_values(by="coefficients",ascending = False)
            plt.subplot(223)
            ax = sns.barplot(x = "coefficients" ,y ="features",data=dataframe,palette="husl")
            plt.title("FEATURE IMPORTANCES",fontsize =20)
            for i,j in enumerate(dataframe["coefficients"]):
                ax.text(.011,i,j,weight = "bold")
        except:
            print(f"{0} has no coef argument", str(algorithm))
            

# UNSCALED DATA
modelX(dt_clf, X_train, y_train, X_test, y_test, "feat")
**********************************************************************
MODEL X
**********************************************************************
DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
                       max_depth=3, max_features=5, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=0.1, min_samples_split=0.2,
                       min_weight_fraction_leaf=0.0, presort=False,
                       random_state=None, splitter='best')

 accuracy_score : 0.9656339935669545

classification report :
               precision    recall  f1-score   support

           0       0.99      0.97      0.98      5363
           1       0.78      0.88      0.82       544

    accuracy                           0.97      5907
   macro avg       0.88      0.93      0.90      5907
weighted avg       0.97      0.97      0.97      5907
Model Statistics

Feature Importance: Kurtosis IP

Kurtosis Integrated Profile (‘KURTOSIS_IP’) is by far the most important classifying feature when it comes to identifying Pulsars. Let’s double check the other metrics with our scaled/transformed data:

# SCALED DATA
modelX(dt_clf, X_train_transformed, y_train, X_test_transformed, y_test, "coef")
**********************************************************************
MODEL X
**********************************************************************
DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
                       max_depth=3, max_features=5, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=0.1, min_samples_split=0.2,
                       min_weight_fraction_leaf=0.0, presort=False,
                       random_state=None, splitter='best')

 accuracy_score : 0.9481970543423057

classification report :
               precision    recall  f1-score   support

           0       0.98      0.96      0.97      5363
           1       0.69      0.81      0.74       544

    accuracy                           0.95      5907
   macro avg       0.83      0.88      0.86      5907
weighted avg       0.95      0.95      0.95      5907

0 has no coef argument DecisionTreeClassifier(class_weight='balanced', criterion='entropy',
                       max_depth=3, max_features=5, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=0.1, min_samples_split=0.2,
                       min_weight_fraction_leaf=0.0, presort=False,
                       random_state=None, splitter='best')
Model 2 Characteristics

F1 Score

The F1 score (also F-score or F-measure) is a measure of a test’s accuracy. It considers both the precision p and the recall r of the test to compute the score: p is the number of correct positive results divided by the number of all positive results returned by the classifier, and r is the number of correct positive results divided by the number of all relevant samples (all samples that should have been identified as positive). The F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0.

Harmonic Mean f1 = 2*(P*R / P+R)

f1 = f1_score(y_test, y_pred)
f1
0.8245462402765774

Because the data involves imbalanced classes, F1 score is the most important metric for us to validate the model’s accuracy. Let’s compare the Decision Tree classifier performance to XGBoost next.

XG Boost

Moving ahead with XG Boost

Create Instance and Fit

# Fit XG Boost model  
# Instantiate XGBClassifier with balanced class weights
xgb_clf = XGBClassifier(class_weight='balanced')

# Fit XGBClassifier
xgb_clf.fit(X_train_transformed, y_train)
XGBClassifier(base_score=0.5, booster='gbtree', class_weight='balanced',
              colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
              gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
              nthread=None, objective='binary:logistic', random_state=0,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
              silent=None, subsample=1, verbosity=1)

Make Predictions

# Predict on training and test sets
training_preds = xgb_clf.predict(X_train_transformed)
test_preds = xgb_clf.predict(X_test_transformed)

Evaluate

Accuracy

# Accuracy of training and test sets
training_accuracy = accuracy_score(y_train, training_preds)
test_accuracy = accuracy_score(y_test, test_preds)

print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))

Training Accuracy: 98.38%
Validation accuracy: 98.02%

ROC_AUC and Confusion Matrix

# SCALED DATA
modelX(xgb_clf, X_train_transformed, y_train, X_test_transformed, y_test, "coef")
**********************************************************************
MODEL X
**********************************************************************
XGBClassifier(base_score=0.5, booster='gbtree', class_weight='balanced',
              colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
              gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
              nthread=None, objective='binary:logistic', random_state=0,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
              silent=None, subsample=1, verbosity=1)

 accuracy_score : 0.9801929913661758

classification report :
               precision    recall  f1-score   support

           0       0.99      0.99      0.99      5363
           1       0.92      0.86      0.89       544

    accuracy                           0.98      5907
   macro avg       0.95      0.92      0.94      5907
weighted avg       0.98      0.98      0.98      5907

0 has no coef argument XGBClassifier(base_score=0.5, booster='gbtree', class_weight='balanced',
              colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
              gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3,
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
              nthread=None, objective='binary:logistic', random_state=0,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
              silent=None, subsample=1, verbosity=1)
Model Characteristics

GridSearchCV

Tuning XG Boost with a parameter Gridsearch

param_grid = {
    'learning_rate': [0.1, 0.2, 0.3],
    'max_depth': [6],
    'min_child_weight': [1, 2],
    'subsample': [0.3, 0.5, 0.7],
    'n_estimators': [100],
}
grid_clf = GridSearchCV(xgb_clf, param_grid, scoring='accuracy', cv=None, n_jobs=1)
grid_clf.fit(X_train_transformed, y_train)

best_parameters = grid_clf.best_params_

print('Grid Search found the following optimal parameters: ')
for param_name in sorted(best_parameters.keys()):
    print('%s: %r' % (param_name, best_parameters[param_name]))

training_preds = grid_clf.predict(X_train_transformed)
test_preds = grid_clf.predict(X_test_transformed)
training_accuracy = accuracy_score(y_train, training_preds)
test_accuracy = accuracy_score(y_test, test_preds)

print('')
print('Training Accuracy: {:.4}%'.format(training_accuracy * 100))
print('Validation accuracy: {:.4}%'.format(test_accuracy * 100))
Grid Search found the following optimal parameters: 
learning_rate: 0.3
max_depth: 6
min_child_weight: 1
n_estimators: 100
subsample: 0.7

Training Accuracy: 99.96%
Validation accuracy: 97.78%

Evaluate Model

AUC

# Check the AUC for predictions
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, test_preds)
roc_auc = auc(false_positive_rate, true_positive_rate)
print('\nAUC is :{0}'.format(round(roc_auc, 2)))

AUC is :0.92
# compare a few different regularization performances on the dataset:
C_param_range = [0.005, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8]
names = [0.005, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9]
colors = sns.color_palette('Set2', n_colors=len(names))

plt.figure(figsize=(10, 8))

for n, c in enumerate(C_param_range):

    # Predict
    #y_pred = tree_clf.predict(X_test)
    y_pred = dt_clf.predict(X_test_transformed)
    y_score = accuracy_score(y_test, y_pred)
    
    
    fpr, tpr, thresholds = roc_curve(y_test, y_pred)
    #roc_auc = auc(fpr, tpr)
    print('----------------------------------------------')
    print('AUC for {}: {}'.format(names[n], auc(fpr, tpr)))
    lw = 2
    plt.plot(fpr, tpr, color=colors[n],
             lw=lw, label='ROC curve Normalization Weight: {}'.format(names[n]))
    
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.yticks([i/20.0 for i in range(21)])
plt.xticks([i/20.0 for i in range(21)])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.show()
----------------------------------------------
AUC for 0.005: 0.8839272493446382
----------------------------------------------
AUC for 0.1: 0.8839272493446382
----------------------------------------------
AUC for 0.2: 0.8839272493446382
----------------------------------------------
AUC for 0.3: 0.8839272493446382
----------------------------------------------
AUC for 0.5: 0.8839272493446382
----------------------------------------------
AUC for 0.6: 0.8839272493446382
----------------------------------------------
AUC for 0.7: 0.8839272493446382
----------------------------------------------
AUC for 0.8: 0.8839272493446382
Area Under the Curve

Confusion matrix

# Create and print a confusion matrix 
print('\nConfusion Matrix')
print('----------------')
pd.crosstab(y_test, test_preds, rownames=['True'], colnames=['Predicted'], margins=True)
Confusion Matrix
----------------
Predicted 0 1 All
True
0 5324 39 5363
1 78 466 544
All 5402 505 5907
# Import confusion_matrix
from sklearn.metrics import confusion_matrix

# Print confusion matrix
cnf_matrix = confusion_matrix(y_test, test_preds)
print('Confusion Matrix:\n', cnf_matrix)
Confusion Matrix:
 [[5324   39]
 [  78  466]]
# Plot normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=['Non-Pulsar', 'Pulsar'], normalize=True,
                      title='Normalized confusion matrix')
Normalized confusion matrix
Normalized Confusion Matrix
# Plot normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=['Non-Pulsar', 'Pulsar'], normalize=False,
                      title='Normalized confusion matrix')
Confusion matrix, without normalization
Confusion Matrix

MSE and R2

from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import r2_score

# Make predictions and evaluate 

print('MSE score:', mse(y_test, y_pred))
print('R-sq score:', r2_score(y_test,y_pred))
MSE score: 0.05180294565769426
R-sq score: 0.38044238299459265

Feature Importance

# Feature importance
xgb_clf.feature_importances_
array([0.04194515, 0.03668287, 0.68801844, 0.03353313, 0.02772439,
       0.09195759, 0.03966612, 0.04047231], dtype=float32)
importance = pd.Series(data=xgb_clf.feature_importances_, index=X_train.columns)
importance.sort_values(ascending=False)
KURTOSIS_IP       0.688018
STD_CURVE         0.091958
MEAN_IP           0.041945
SKEWNESS_CURVE    0.040472
KURTOSIS_CURVE    0.039666
STD_IP            0.036683
SKEWNESS_IP       0.033533
MEAN_CURVE        0.027724
dtype: float32
def plot_feature_importances(model):
    
    importance = pd.Series(data=model.feature_importances_, index=X_train.columns)
    importance = importance.sort_values(ascending=True)
    n_features = X_train.shape[1]
    plt.figure(figsize=(8,8))
    plt.barh(importance.index, importance.values, align='center') 
    #plt.yticks(np.arange(n_features), X_train.columns.values) 
    plt.xlabel('Feature importance')
    plt.ylabel('Feature')

plot_feature_importances(xgb_clf)
Feature Importance
print("Testing Accuracy for XG Boost Classifier: {:.4}%".format(accuracy_score(y_test, y_pred) * 100))
Testing Accuracy for XG Boost Classifier: 94.82%
print("Testing F1 Score for XG Boost Classifier: {:.4}%".format(f1_score(y_test, y_pred) * 100))
Testing F1 Score for XG Boost Classifier: 74.11%

INTERPRET RESULTS

# Cross-Validation
from sklearn.model_selection import cross_val_score

xgb_cv_score = cross_val_score(xgb_clf, X_train_transformed, y_train, cv=3)
mean_xgb_cv_score = np.mean(xgb_cv_score)

print(f"Mean Cross Validation Score: {mean_xgb_cv_score :.2%}")
Mean Cross Validation Score: 98.02%
# Feature Importance
from xgboost import plot_importance

plot_importance(booster=xgb_clf)
feature importance labeled

Summary

I began analysis with a pipeline to determine the most accurate models for predicting a pulsar. After performing Standard Scaling on the dataset, I split the dataset into train-test prediction models for Logistic Regression, Support Vector Machines, Decision Trees and XG Boost. All were fairly accurate, with Decision Trees and XG Boost topping the list for accuracy scores.

Decision Tree Performance

I then proceeded with a Decision Tree classifier with balanced class weights, which did fairly well, scoring 96% accuracy. However, because of the imbalanced classes, the F1 score is our most important validator for model accuracy, and the Decision Tree classifier scored 82%.

XGBoost Performance

Moving on to XGBoost, the model scored 98% accuracy with an 89% F1 score. The model successfully identify 466 pulsars, missing only 78 which it mistakenly identified as noise.

RECOMMENDATIONS

 * Focus on Kurtosis Integrated Profile
 
 * Focus on Standard Deviation DM-NSR Curve
 
 * Validate model predictions with analysis of other celestial objects 
 producing cosmic rays to see if they show the same attributes.

FUTURE WORK

  1. Improving the model, trying other ways of scaling, balancing class weights.

  2. Looking at stars right before they die - predicting whether or not it will become a pulsar or not (could be slightly impossible considering stars live for billions of years…)

CODE

github repo

CONTACT

rukeine@gmail.com

LICENSE

MIT License

                       
           /\    _       _                           _                      *  
/\_/\_____/  \__| |_____| |_________________________| |___________________*___
[===]    / /\ \ | |  _  |  _  | _  \/ __/ -__|  \| \_  _/ _  \ \_/ | * _/| | |
 \./    /_/  \_\|_|  ___|_| |_|__/\_\ \ \____|_|\__| \__/__/\_\___/|_|\_\|_|_|
                  | /             |___/        
                  |/   
Your Browser Doesn't Support Canvas, Please Download Chrome or compatible browser. tags: astrophysics - project - pulsars - classification - astrophysics